
FLEXI-FLOW[™]Compact

The new standard in measurement & control of mass flow and pressure

Mass Flow Control **#Redefined** Swift & Stable, Proven & Precise

DATASHEET

> TCS Technology

Bronkhorst has created a completely new concept for measuring mass flow using the thermal

measuring principle. The unique TCS Technology (Through Chip

Sensor) combines the best of two technologies: a fast and stable chip flow sensor applied in Bronkhorst's proven by-pass construction. Due to the TCS Technology, accurate mass flow measurement, virtual independent of variations in temperature and line pressure is established. By measuring the actual process conditions (temperature and line pressure), a real-time correction is made to the measured value. And because all gas properties are available on-board, accurate conversion to other gases is possible.

> Unique FLEXI-FLOW[™] features

Fast response

Due to the ultra-thin sensor tube, the sensor reacts instantaneously to changes of the gas flow, resulting in very fast flow measurement. Combined with a direct acting control valve, settling times smaller than 150 ms are achieved.

Multi parameter

Besides mass flow measurement, the instrument has an integrated temperature sensor and 2 pressure sensors (instrument inlet and outlet pressure). These measurement parameters do not only provide information about the instrument but also about the process conditions.

On-board FLUIDAT® gas database

Select your process gas. With 22 on-board gases, it is very easy to switch to another gas or mixture. Additionally, the on-board gas database is used for real-time corrections on the flow measurement based on the actual process conditions (temperature and line pressure).

Namur NE107 status indication

The instrument shows the status of self-monitoring and diagnosis by means of a coloured LED. This signal can be easily recognized by the operator. For more details the diagnostic parameters can be used.

Compact design We have been able to similar instrume

We have been able to reduce the footprint by 35% compared

to similar instruments up to 20 l_n/min. Due to this compact size, the instrument is very suitable to be used inside desktop equipment or at places where space is limited.

Separate USB-C communication interface

For easy setup outside the installation, the USB-C port can be used. Communication can be established with the Bronkhorst FlowSuite software without the need of an additional power supply.

During operation, this port can also be used to monitor the instrument without disconnecting the power and data connection.

Bluetooth communication

To enhance user flexibility, a wireless connection allows monitoring the instrument without disconnecting the regular power and data connection. In case Bluetooth is not desired, this function can be disabled.

Sustainable and environmentally friendly

Due to the accurate conversion, calibration with valuable or rare gases is no longer necessary. In addition, Bronkhorst's products are known for their low power consumption. The reduced size and weight of the instrument minimizes its environmental impact.

Predictive maintenance

Prepared for predictive maintenance and diagnostic functions by means of datalogging of several parameters, that can be used to predict the health status of the instrument and condition of the process. With multiple configurable alarms the information can be transferred to the user.

> The new standard in measurement & control of Mass flow and pressure

- 3 control types in one compact instrument
- Mass flow
- Upstream pressure
- Downstream pressure
- Multi parameter output
 - Actual mass flow
 - Upstream pressure
 - Downstream pressure
 - Temperature (instrument)
- Simple and secure connection through Bluetooth or USB-C
- High accuracy through on-board gas database and real-time conversion
- Easy to configure
- MTBF 145 years

> Models and ranges

Mass Flow and Pressure Meter

Model	Full scale flow (N ₂ eq.)
FF-M1x	0,5…20 l₅/min

Mass Flow and Pressure Controller

Model	Full scale flow (N ₂ eq.)
FF-C1x	0,5…20 I₀/min

> Technical specifications

Measurement / control system

Flow	
Accuracy (N₂, Air, O₂) For other gases see multi gas table	up to ±0,5% Rd plus ±0,1% FS
Repeatability	< ± 0,2% Rd
Typical settling time (T ₉₈) in control	<150 ms
Response time (T63)	<30 ms
Long term stability	<0.5% FS over period of 3 years, then <0.2% FS per year
Control stability	$<\pm$ 0,1% FS (typical for 1 ln/min N_{2})
Control range / measurement range	up to 1:1000
Multi Gas / Multi Range	embedded gas data for 22 unique gases plus any mixture of these gases
Operating temperature	050 °C (32°F - 122°F)
Storage / transport conditions	-2050 ℃
Temperature sensitivity	zero 0,015 % FS/°C span 0,03 % Rd/°C
Pressure sensitivity	standard: < 0,15% Rd/bar typical N_2; with pressure correction: < 0,02% Rd typical N_2 $$
Mounting	any position, attitude sensitivity negligible
Temperature	
Accuracy temperature sensor	\pm 0,2 °C (instrument body temperature)
Pressure	
Accuracy pressure sensors (incl. linearity and hysteresis)	±0,5% FS
Pressure range	017 bar(a)
Repeatability pressure sensors	<0,2% FS
Temperature sensitivity	zero: 0,16 mbar/°C span: 0,05% Rd/°C

Mechanical parts

Material (wetted parts)	aluminium, stainless steel, silicon nitride, epoxy, aluminiumoxide, glass
Process connections	optional compression type, push-in or face seal couplings
Seals	default: FKM 51415 For other materials contact factory
Pressure rating	16 bar(g) / 250 psi(g)
Leaktightness, outboard (prior to permeation through seals)	tested < 2·10 ⁻⁹ mbar.l/s He
Leak-by through closed valve	typical < 1·10⁴ mbar·l/s He
Surface roughness body (wetted parts)	<1,6 μm Ra (<0,8 μm Ra for stainless steel body)
Ingress protection (housing)	IP40
Weight	Aluminium body: 200 g Stainless steel body: 300 g
Electrical properties	
Power supply	24 Vdc ± 10%

Electrical connection	9-pin D-sub male	
Power consumption	meter 0,35 Watt controller 2,0 Watt	
Digital communication	Modbus RTU FLOW-BUS	
Certification	CE / RoHS	

Technical specifications and dimensions subject to change without notice.

> Multi-channel systems

FLEXI-FLOW *Compact* instruments can be combined to build a compact system – ready to use. Multi-channel systems up to 8 channels can be easily created with the help of configuration software.

The use of distribution chambers at the inlet or mixing chambers at the outlet ensures a compact and small build of the system. Communication from the multi-channel system to the PLC can be established with additional gateways.

Since the system is completely assembled and tested at Bronkhorst, the effort required for commissioning is kept to a minimum.

> Typical markets

Bioreactors Increased deployment of a flow instrument by Air, N₂, O₂, CO₂ - multi-gas functionality and availability of multiple flow ranges in a single instrument.

Compact for desktop equipment.

Very accurate and repeatable over short-term and long-term for H_2 , Air, O_2 and CO_2 flow measurement and control. Fast response flow measurement and control for accuracy at any time.

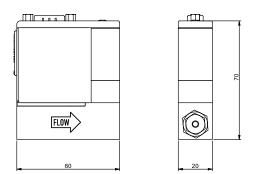
Large dynamic range flow measurement and control for accuracy over a wide flow range. Compact for space-restricted mobile applications.

And many other applications High-end burners, plasma spray, leak testing, ALD, etc.

Reactive sputtering Fast follow-up of setpoints for layer thickness and transparency control.

Large dynamic range for flexibility within the application.

Trace Elemental Analysis (TEA) Gas Chromatography (GC) Optical Emission Spectroscopy (ICP-OES) Mass Spectrometry (MS, ICP-MS) Atomic Absorption Spectrometry (AAS)


Excellent repeatability and long-term stability.

Analytical grade; low outgassing. Fast flow control, also at very low flow rates. Compact for desktop equipment.

DATASHEET

> Dimensions

> Multi gas table

To determine which model is suitable for process gases other than N_{2r} the full-scale flow must be multiplied by the below-mentioned "flow factor". Note: this factor might be different for a flow meter (MFM) or a flow controller (MFC).

The highly accurate on-board Fluidat gas database ensures best in class conversion from N_2 to the customer gas. When converting one gas to another, a small uncertainty is introduced. Although gas properties and conversion model are very accurate, mechanical tolerances can cause slight deviations from the theoretical conversion values. When the best accuracy performance is needed, calibration on actual process gas can be performed.

Name	Gas Formula	Full scale factor (MFM)	Full scale factor (MFC)	Remarks
Acetylene	C_2H_2	0,6	0,6	
Air	Air	1	1	
Allene	C ₃ H ₄ #1	0,4	0,4	
Argon	Ar	1,3	0,8	
Carbon dioxide	CO ₂	0,7	0,7	Max. 10 bar
Carbon monoxide	CO	1	1	
Cyclopropane	C ₃ H ₆ #1	0,4	0,4	
Deuterium	D ₂ #1	1	1	
Ethane	C_2H_6	0,5	0,5	
Ethylene	C_2H_4	0,6	0,6	Max. 10 bar
Helium	He	1,4	1,4	
Propyne	C ₃ H ₄ #2	0,4	0,4	
Hydrogen	H ₂	1	1	
Krypton	Kr	1	0,6	
Methane	CH_4	0,8	0,8	
Neon	Ne	1,4	1,2	
Nitrogen	N ₂	1	1	
Oxygen	O ₂	1	0,9	
Propylene	C ₃ H ₆ #2	0,4	0,4	Max. 10 bar
Propane	C_3H_8	0,3	0,3	
Perfluoropropane	C ₃ F ₈	0,15	0,15	Max. 10 bar
Nitrous oxide	N ₂ O	0,7	0,7	

> Electrical connection

9-pin D-sub male

	1	RS-485 D0 (A/A')
	2	Not connected
r 🔘	3	Not connected
5 <u></u> •}−9.	4	OVs
	5	Not connected
1— 6 .	6	RS-485 D1 (B/B')
	7	+Us
\bigcirc	8	OVs
	9	Shield

FLEXI-FLOW[™] Compact preconfigured models

Due to the flexibility and versatility of the instrument, Bronkhorst has defined 4 models to cover the flowrange from 500 ml_n/min to 20 l_n/min. Two performance levels (advanced and standard) are available. The FLEXI-FLOW *Compact* instruments are factory calibrated on N₂ and can be adjusted with the easy-to-use FlowSuite software (available for Windows and iOS) to meet your specific process needs.

Part number	FS flow (based on $\rm N_{2} @$ 1 bar abs)	Туре		
7.11.785	500 ml _n /min	FF-A500		
7.11.786	2 l _n /min	FF-A2K0	advanced	
7.11.787	5 l _n /min	FF-A5K0	functionality	
7.11.788	20 l _n /min*	FF-A20K		
7.11.789	500 ml _n /min	FF-S500		
7.11.790	2 l _n /min	FF-S2K0	standard	
7.11.791	5 l _n /min	FF-S5K0	functionality	
7.11.792	20 l _n /min*	FF-S20K		
* May AD E har/d) for higher AD refer to FE C1y model				

* Max. ∆P: 5 bar(d), for higher ∆P refer to FF-C1x model

Features advanced and standard models

	Advanced	Standard	
Multi parameter	Flow, temperature, pressure up- and downstream	Flow, temperature	
Accuracy (N ₂ , Air, O ₂) For other gases see multi gas table	±0,8%Rd plus ±0,2%FS	±1,5%Rd plus ±0,5%FS	
Control range / measurement range	1:500	1:50	
Multi function (selectable)	Flow control, pressure control	Flow control	
Diagnostic funcion	Namur status, data logging	Namur status	
Multi Gas / Multi Range	Embedded gas data for 22 unique gases		
Communication (selectable)	Modbus RTU, FLOW-BUS		
Connectivity	USB-C, Bluetooth		
Pressure rating	16 bar(g) / 250 psi(g)		
Body material	Aluminium		
Seals	FKM		
Process connections	None, to be ordered seperately		

> About Bronkhorst

For more than 40 years Bronkhorst has been supplying instruments and solutions for the measurement and control of gas flow and pressure. In that time, our portfolio has grown considerably, as we have responded well to the requirements of our customers by means of our innovative strength. Moreover, we have continuously improved our mass flow and pressure meters and controllers by applying the latest techniques. These market requirements and the availability of high-quality production techniques have again led to the development of a new, revolutionary product line: FLEXI-FLOWTM *Compact*.

Bronkhorst High-Tech B.V. Nijverheidsstraat 1a NL-7261 AK Ruurlo, The Netherlands Tel. +31 573 458800 info@bronkhorst.com www.bronkhorst.com

